
Structure of the density matrix providing the minimum generalized uncertainty relation for

mixed states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 6807

(http://iopscience.iop.org/0305-4470/33/38/311)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 6807–6816. Printed in the UK PII: S0305-4470(00)11573-2

Structure of the density matrix providing the minimum
generalized uncertainty relation for mixed states

M U Karelin and A M Lazaruk†
Institute of Physics, National Academy of Sciences, Minsk 220072, Belarus

E-mail: karelin@ifanbel.bas-net.by

Received 2 February 2000

Abstract. For a configurational space of arbitrary dimension a strict form of the uncertainty
principle has been obtained, which takes into account the dependence of the inequality limit on the
effective number of pure states present in a given statistical mixture. It is shown that in a state with
minimal uncertainty the density operator eigenfunctions coincide with the stationary wavefunctions
of a multi-dimensional harmonic oscillator. The spectrum of eigenvalues of the density matrix is
degenerate and its terms with the same uncertainty have identical weights in the expansion. This
leads to additional ‘packing of states’ (i.e. decreasing of the specific phase volume per particular
state in the mixture as compared with the limit of the system in a pure state).

The analogy between the generalized uncertainty principle and one of the main postulates
of statistical physics on phase-space partitioning into cells corresponding to one quantum state is
discussed.

1. Introduction

Uncertainty relations play an ultimate role in the foundation of quantum mechanics [1, 2].
The uncertainty principle states that in an ensemble (which can be described by a vector of the
quantum state or by a density matrix) of quantum systems, non-commuting observables cannot
be measured with arbitrary accuracy, but there is a lower limit on the product of the variances of
such observables. These observables may be the position and momentum of particles, different
components of spin or angular momentum, and so forth (see [3] for a comprehensive review).
Then, if one describes a system which is in the mixed state, the situation is changed radically—
mixed states in general cannot achieve the minimum of uncertainty principle [4]. As shown in
papers [5–7], the generalization of the conventional position–momentum uncertainty relation
to the case of the density matrix ρ(x, x ′) gives that the smallest allowable room�vp, occupied
by the system in phase space, grows proportionally to the effective number Neff of pure states
by whose statistical mixture the given density matrix is represented, that is

min(�vp) ∝ Neff . (1)

One of the possible variants of relation (1), which can be used in a real or configurational space
X = (x1, . . . , xs) with an arbitrary number of dimensions s, has been obtained in [10] and is
of the form

(�x�q)s

Neff
� C(s)

(
1

2

)s
. (2)

† Late.
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The following definitions are introduced here: �x, �q the root mean square widths
(additionally averaged over all s degrees of freedom)† correspond to the coordinate and
wavevector distributions in the state ρ(x, x ′)

(�x)2 = 1

s

∫
dsXX2ρ(X,X) (3)

(�q)2 = −1

s

∫
dsX

∫
dsX′ δ(X − X ′)∇2

Xρ(X,X ′)
[
∇2

X =
s∑
i=1

∂2
xi

]
(4)

Neff =
( ∫

dsX
∫

dsX′ |ρ(X,X ′)|2
)−1

. (5)

In addition, it is assumed that the normalization condition∫
dsX ρ(X,X) = 1 (6)

is met and the mean values of position and momentum are equal to zero (without loss
of generality the latter can be achieved by choosing an appropriate reference frame). For
convenience the right-hand side of inequality (2) is represented as two factors. one of which,
(1/2)s , is the minimum of the usual uncertainty relation for pure states and, as is known, is
attained for Gaussian wavepackets [1]. The second factor, C(s), can be named the ‘packing
coefficient’ and expresses the specificity of the Neff definition and, properly, the influence of
the space multi-dimensionality [10]:

C(s) = 2s+1(s + 1)!

(s + 2)s+1
. (7)

The particular interest of relation (2) is caused by its analogy with one of the basic statements
of statistical mechanics [11,12] concerning the partitioning of the phase space into cells, with
each of them corresponding to one quantum state. Indeed, the quantity �vp = (�x�q)s is a
peculiar kind of measure of a system phase volume, whereas Neff is a characteristic number
of its possible states. It is therefore obvious that, despite the considerable differences in the
formulations used, in either case one can speak about two possible ways of exhibiting one and
the same fundamental property of quantum-mechanical objects.

On the other hand, inequality (2) holds not only for the density matrix, but also for
correlation functions of the wavefields of various nature, and it can be seminally applied, after
appropriate terminology corrections, in other fields of physics. In fact, the basic works [5–7],
where the one-dimensional case of relation (2) was obtained, deal with partially coherent light
beams.

In [10] a variant of the proof was based on the Carlson-type integral inequalities for the
Wigner function. This implies some disadvantages, in particular because such an approach
does not determine the explicit form of the density matrix minimizing (2). This question is of
interest in itself and, at the same time, is important for applications (for example coherence
theory [13]). Hence in this paper we shall consider an alternative way of deriving relation (2).
The aim is not only to solve the problem stated, but also to reinforce the inequality (that is to
find a more tight and accurate bound) by taking into account the dependence of the packing
coefficient on the effective number of states C(s) ⇒ C(s,Neff).

† Usually (see, e.g., [8, 9]), when considering the uncertainty principle for multi-dimensional cases, one uses a
determinant of the covariance matrix. Our approach is based on a trace of such a matrix. But, at a symmetrical
minimum uncertainty state—that is when uncertainties in xi for all i are equal (and similarly for the momentum) and
close to the uncertainty minimum—both approaches give the same result.
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2. Formulation of the problem and rigorous solution

The method to be applied constitutes a modification of the approach which was developed in [3]
to analyse an analogous one-dimensional problem. It is based on the use of standard Lagrange
procedure of search for the minimum of the uncertainty volume of the system (i.e. the value
�x�q) under a constraint of given Neff (5). As is common for such treatments [3, 5–7, 10],
one should search for the extremum of the auxiliary functional F:

F[ρ(X,X ′)] = k2(�x)2 +
1

k2
(�q)2 (8)

which has the property that its minimum for k (k is a variate scale factor) is attained
simultaneously with the minimum of the uncertainty volume

min
k

F = 2�x�q.

The substitution of definitions (3) and (4) into (8) shows that the value of F coincides in form
with the mean value of the energy of the s-dimensional symmetrical harmonic oscillator with
a Hamiltonian

1

s

(
− 1

k2
∇2

X + k2X2

)
which is in the mixed state ρ(X,X ′). It is therefore natural in further treatment to represent
ρ(X,X ′) as a series expansion in the basis of this Hamiltonian eigenfunction

ρ(X,X ′) =
∑
n,n′

an,n′�n(X)�n′(X ′) (9)

where n = (n1, . . . , ns) is the ‘vector’ index whose components range over non-negative
integer numbers

�n(X) =
s∏
i=1

ψni (xi)

ψn(x) =
√

k

2nn!
√
π

exp(−k2x2/2)Hn(kx)

Hn(x) = 1
4√π ex

2 dn

dxn e−x2
are Hermite polynomials, the functions �n(X) are real and

orthonormal. In view of what has just been given, the substitution of (9) into (8) gives

F =
∑

n

an,n

(
2

s
‖n‖ + 1

)
‖n‖ =

s∑
i=1

ni. (10)

Now the additional condition, under which the effective number of states (5) is constant, can
be written in the form

µ = 1

Neff
=

∑
n,n′

|an,n′ |2 = const (11)

(in statistical optics the parameter µ is frequently referred to as global degree of coherence [5–
7], and in literature on quantum state measurement [14] this value is often called ‘purity’).
One more constraint on the expansion coefficients an,n′ follows from the requirement for the
density matrix (6) normalization∑

n

an,n = 1. (12)

Without going into details of elementary, although cumbersome intermediate calculations,
we now turn to the analysis of the solution obtained. The first and most important consequence
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of the minimization of F (10) in coefficients an,n is that in the state of least uncertainty
ρmin(X,X ′) all off-diagonal elements of the matrix [an,n] are equal to zero

an,n′ = an,nδn,n′ .

It means that, in this case, the density operator’s eigenfunctions [11] (in optics, the
decomposition modes) coincide in form with the eigenfunctions of the energy operator of the
multi-dimensional harmonic oscillator. Accordingly, the diagonal elements of matrix [an,n′ ]
are the eigenvalues of the density operator

an,n�n(X) =
∫

dsX′ ρmin(X,X ′)�n(X
′).

These define the probabilities of finding the system in the pure state �n(X) and satisfy the
conditions Im an,n = 0 (as a consequence of [an,n′ ] is Hermitian) and 0 � an,n � 1.

It should be noted here that the use of characteristic Neff as a measure of the number of
possible pure states of the system is directly related to the operation of the transition to the
basis of the density operator’s eigenfunctions in representation (9). In the theory of stochastic
processes [15] this procedure is referred to as Karhunen–Loéve expansion of the ‘correlation
function’ ρ(X,X ′) and gives, as is known, the most compact and the most rapidly converging
form of this series. Therefore, in this paper (as well as in [10]) under the term ‘state’ what is
meant is, as a rule, the eigenstate of the density operator.

The second conclusion, directly following from the form of (10)–(12), is that the weights
of states an,n can only depend on the vector index norm ‖n‖, and this dependence is linear
and decreasing when ‖n‖ increases. Then it is obvious that at any finite value of Neff the
number of pure states N present in the expansion ρmin with a probability other then zero is also
finite. Also in the index domain, the coefficients an,n 
= 0 fill, layer by layer, the interior of an
s-dimensional equilateral pyramid with the total number of layers equal to L (0 � ‖n‖ < L).
The most probable pure state (n = 0) corresponds to the pyramid’s vertex. The terms of
expansion (9) pertaining to some particular layer are absolutely equivalent and make an equal
contribution to the functional F. Hence the spectrum of the eigenvalues in this mixed state is
degenerate, and degeneration multiplicity in each layer is determined by the value of ‖n‖ and
space dimensionality s

gs(‖n‖) = (‖n‖ + s − 1)!

(‖n‖)!(s − 1)!
.

The total number of significant terms in (9) is given by the relation

N (L) =
L−1∑

‖n‖=0

gs(‖n‖) = (L + s − 1)!

(L − 1)!s!
= L
s
gs(L).

Finally, the sought state ρmin, which realizes the minimum of the generalized uncertainty
relation, is described by series (9) with coefficients

an,n =



1

N (L)

[
1+((L−1)s−‖n‖(s+1))

√
(N (L)−Neff)(s+2)√
Neffs(L + s)(L − 1)

]
0 � ‖n‖ < L

0 ‖n‖ � L
(13)

and the inequality analogous to (2) takes the form

�x�q � (2L + s − 1)

2(s + 1)
−

√
(N (L)−Neff)(L + s)(L − 1)

(s + 1)
√
Neffs(s + 2)

= B(Neff ,L(Neff)). (14)

It should also be kept in mind that the quantity L, a certain positive integer, still remains a
free parameter of the task and should be chosen proceeding from the condition of minimality
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of the right-hand side of inequality (14). By this means L will be a certain function of Neff .
The above requirements for the expansion coefficients an,n (13) to be real and positive impose
restrictions on allowable values of this parameter, namely the quantity L should satisfy the
following inequalities:

Neff � (L + s − 1)!

(L − 1)!s!
(15)

Neff >
(L + s − 1)!

(L − 2)!(s + 1)!

s + 2

s + 2(L − 1)
. (16)

There exist certain ranges of values ofNeff and s (in particular s � 1), in which inequalities (15)
and (16) determine L uniquely. But where this is not fulfilled and several integers fall within
the interval given by formulae (15) and (16), the sought value of L turns out to be the largest
of them (i.e. the integer nearest to the upper boundary of (16)).

Inequality (14) is more difficult to obtain than the previous inequality (2). On the plane
of parameters with coordinates �x�q and Neff it rigorously defines the region of physically
realizable states. It is therefore apparent and can easily be proved that one should arrive at
the same distributions of the expansion coefficients (13) and the same region (14) by solving
the inverse problem of seeking a mixed state with the largest possible value of Neff at a given
measure �vp of the phase volume occupied by this state.

3. Approximate form of the uncertainty relation

By virtue of the fact that with increasing Neff the quantity L goes through a set of discrete
values, the boundary of the physical region B(Neff) in (14) is not a perfectly smooth curve
and is not described by an analytical expression. Even though the numerical calculation of
the right-hand side of inequality (14) presents no problem, it would be desirable to have its
approximate analytical form in order to analyse the obtained relation and compare it with (2).

To this end we have investigated the behaviour of the function B(Neff , L̃) at a given
value of Neff , formally, regarding L̃ as an independent continuous variable. Analytical and
numerical calculations show that in the vicinity of the true value of L the dependence of B on
L̃ is extremely weak. As well, in this region, slightly different neighbouring local minima and
maxima for B(L̃) occur. This gives grounds to use the continuous parameter L̃ instead of the
discrete number L when approximately describing the boundary of inequality (14). There are
several ways of choosing the specific condition determining the value of L̃.

The following one seems to be fairly simple and logically substantiated. In the expression
for expansion coefficients (13), one can formally require a ‘continuous’ transition of its first
part to the second one†, which, after a little algebraic manipulation, yields a transcendental
equation for determining L̃ in the form

aL̃,L̃ = 0 ⇒ Neff = (s + 2)�(L̃ + s + 1)

(s + 2L̃)(s + 1)!�(L̃) (17)

(because L̃ is continuous the factorials entering into the formula for N (L) have been replaced
here by Euler gamma functions). Accordingly, with such a way of defining L, the approximate
expression for inequality (14) can be written in the parametric form

�x�q � s + 2L̃(Neff)

2(s + 2)
. (18)

† Naturally, in this case, the variable ‖n‖ in (13) should also be regarded as continuous.
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It should be noted that the approximate boundary of the physical domain, given by relations (17)
and (18), exactly coincides with the result of the procedure proposed in [3], proceeding from
the definition of L as the upper bound of inequality (16).

Another way of finding a smooth form of the boundary, B(Neff), can be chosen by
substituting L with the value of L̃′ corresponding to minL̃ B(Neff , L̃). The obtained curve
has the advantage that it is wholly located in the physical domain and is tangent to the strict
boundary at individual points. Unfortunately, at large s, this method does not lead to analytical
formulae.

Finally, according to the above-mentioned property of equivalence of the direct and the
inverse problems, the domain of physically realizable states can be represented as an inequality
of the largest possible value of Neff at given �x�q. On the basis of (17) and (18) it gives the
analytical expression

Neff � 1

2�x�q

�((s + 2)�x�q + s/2 + 1)

(s + 1)!�((s + 2)�x�q − s/2)
. (19)

The introduction of the concept of ‘packing coefficient’ C(s,Neff) (whose explicit form
is not described by a simple analytical formula) permits us to rearrange relations (14) and (18)
into a form similar to (2)†. The point of such a transformation is that the main dependence of
the generalized uncertainty relation on the parameters of the problem is emphasized, whereas
0 � C(s,Neff) � 1 plays the role of a correction factor with comparatively weak dependence
on Neff .

The method of obtaining the approximate expression for the physical domain boundary
assumes that the approximation (18) should tend to the exact formula (14) with increasing L
(and, thus Neff as well). In reality, exactly in the limit of L � 1, the substitution of a discrete
value of L by a continuous value of L̃ slightly affects the weights of the individual states in (13).
However, even at small Neff � 1, the approximate relations (18) and (19) turn out to be in
very good accord with the rigorous inequality (14). The reason for this is the above-mentioned
local behaviour of B(L̃).

This is illustrated by plots of exact and approximate dependencies of C(s,Neff) given in
figure 1 for some values of s. From this figure it is seen that rather insignificant discrepancies
between (14) and (18) take place only at smallNeff (nearNeff ≈ 1), and they are more definite,
the greater the problem of the dimension s. At large Neff � 1 the approximate solution is
equal to the rigorous one. But, with increasing s, quite a good coincidence occurs between
approximate relation (18) and the rigorous one (14) at higher values of Neff .

Comparing inequalities (2) and (18), it can be easily shown that (2) is an asymptotic form
of (18) (and, consequently, (14)) at Neff → ∞, but at s > 1 a good approximation of (2) to
(14) is only attained at largeNeff . At the same time, the refined form of the uncertainty relation
(14) correctly describes the whole range of values of Neff and, in particular, the ultimate case
of the pure states

C(s,Neff = 1) = 1 (�x�q)s |Neff =1 � ( 1
2 )
s .

The coincidence of the asymptotic form of the packing coefficient C(s,Neff � 1) with
formula (7) justifies the use in [10], when proving (2), of the assumption that the Wigner
function is non-negative for the density matrix in the state with minimal uncertainty.

† Here, as well as in [10], we define the value of C(s,Neff ) just as a correction factor of the uncertainty limit for pure
states:

C(s,Neff ) ≡ min
(�x�q)s

Neff

(
1

2

)−s
.
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Figure 1. The packing coefficient C(s,Neff ) versus the effective number of pure states in the statistical mixture (9) for dimensions s = 1, 2, 3. Solid curve—strict inequality (14),
dotted curve—approximation (18), dashed curve—the asymptotic value C(s) for Neff � 1 (7).
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4. Discussion

At a qualitative level, the treatment of the standard uncertainty relation as a requirement for
the phase-space quantization in wave mechanics is rather frequently seen in the literature on
physics (see, e.g., [16]). Therefore, it can serve, in some way, as an argument in substantiating
the postulate of statistical mechanics on the number of cells in phase space of the system

Vp(E)
N

= (2π)s (20)

where Vp(E) is the phase volume of the system with given energy E and N is the number of
levels with energies not exceeding E (detailed definitions can be found in [1]). The results
of [3,5–7,10] and of the present paper open up the possibility of a quantitative comparison of
relations (2), (14) and (20).

First of all their similarity lies in the fact that the quantities of the same physical nature
enter into the right- and the left-hand sides of expressions (2) and (20) by an identical manner.
But the differences between (2) and (20) are far more essential, and there is nothing strange
about the differences, if we take into account the way in which the concepts of the phase
volume and the number of states are introduced in both cases.

The postulate given by (20) specifies the relation between the energetic structure of the
quantum system and the phase space which can be associated with this system in the quasi-
classical approximation [1]. Such a relation is assumed to be universal and independent of a
particular Hamiltonian of the system. Formula (20) describes the system as a whole and has
no connection to its particular physical state.

In contrast, inequalities (2) and (14) just refer to the physical state of the quantum system.
Like equation (20), they are explicitly associated with neither the kind of Hamiltonian nor
the structure of the energy levels. The only limitation is that, since the basic functions of
expansion (9) form a complete set, the wavepackets, satisfying the condition of minimum
uncertainty for mixed states, can be constructed only for Hamiltonians whose eigenfunctions
also form a complete orthonormal basis. This holds, in particular, for the simplest system
of non-interacting particles in a free space. In general, however, the eigenstates of the
density operator are not the states with constant energy and, thus, the state with the minimum
uncertainty will not be stationary. The only exception is the case of a multi-dimensional
harmonic oscillator†.

It is clear from above that the quantities �vp and Vp, respectively, in equations (2), (14)
and (20) not only do not coincide numerically with one another (even for an oscillator), but
also have a different operational meaning. A similar statement for a general case is true for
the quantities Neff and N as well. So there is nothing surprising in the fact that relation (2)
has the form of an inequality, while (20) is an equality. It is possible that a better correlation
between (2) and (20) can be attained by using other, alternative formulations of the uncertainty
principle [3].

It is worthwhile drawing attention to one more difference between (2) and (20). In the
postulate given by (20), the phase-space volume of any quantum cell is constant and varies
with a change of dimensionality in a strictly definite way—as (const)s . In contrast, in the
generalized uncertainty relation (14), the minimal specific phase volume (i.e. the volume per
one effective pure state of the system) depends on the value of Neff . As seen from figure 1,
the quantity C(s,Neff) is less than unity and monotonically decreases with increasing Neff . It
means that as the number of pure states involved in the statistical mixture for ρ(X,X ′) rises,
there is a gain in the packing density of the states.

† One should choose the unit of length or, what amounts to the same thing, the value of parameter k to make F the
expectation value of the harmonic oscillator Hamiltonian.
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In paper [10] it was also noted that the effect of increasing packing with the augment of
the configurational space dimension s, is expressed by the inequality

C(ks) � C(s)k (k � 1).

From (19) one can easily see that an analogous relation for the coefficients C(s,Neff) in the
general case does not hold and this property of packing is asymptotic, i.e. in each particular
case (s, k) it takes place beginning with sufficiently large Neff . The reason for this should be
sought in the peculiarities of behaviour of degeneration multiplicity gs(‖n‖) as a function of
‖n‖ and s. It is natural to suppose that the decrease in the coefficient C(s) with increasing s
is due to the rapid growth of the value of gs , and for different dimensions it would be proper
to compare the packing at equal values of the parameter L rather than Neff .

In this context, it is interesting to consider the case of the density matrix (9) with equal
weights of all pure states an,n′ = δn,n′/N involved, that somewhat resembles the definition
of N in (20). For this situation all methods of determining Neff give Neff = N and, although
the minimum of the uncertainty relation (14) for such a system is slightly exceeded, both the
above properties of the packing coefficient are fulfilled.

It is necessary to discuss also the question of what physical meaning is attributed to the
arguments (coordinates) entering into the density matrix ρ(X,X ′). These may be either the
coordinates of one particle in the real three-dimensional space or the coordinates of several
particles in the configurational space, or both at once. The above solution for the density
matrix in the state with minimal uncertainty is invariant under any permutation of its arguments
(xi ⇔ xj ). For the real coordinates of one particle it means that the corresponding wavepacket
possesses some rotational symmetry in three-dimensional space. But when arguments being
interchanged correspond to several particles, it is necessary to take into account the properties
of their permutational symmetry. For indistinguishable identical particles the state with such
a symmetry can only be realized in the case when these particles follow Bose statistics. In
contrast, identical particles with Fermi statistics cannot be described by a density matrix of
the form (9) with coefficients given by (13). The state with minimal uncertainty for fermions
should be sought, from the very beginning, in the class of wavefunctions antisymmetrized
in permutations of arguments, which, naturally, should lead to a result drastically different
from (14).

Finally, we shall briefly mention that our results are applicable to density matrices of any
origin. For example, all the considerations will remain valid for a marginal density matrix
of a subsystem when the whole system is in an entangled state. The question of whether all
subsystems can achieve a minimum of the uncertainty principle is not trivial, and its detailed
discussion will be the subject of another paper.
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